#### Part I- Chapter 1: Electrical Breakdown in Gases

## 1.6 Factors influencing breakdown voltages of gases

**Instructor: Dr. Jian Li** 



## **1.6.1 Influences of field non-uniformity**

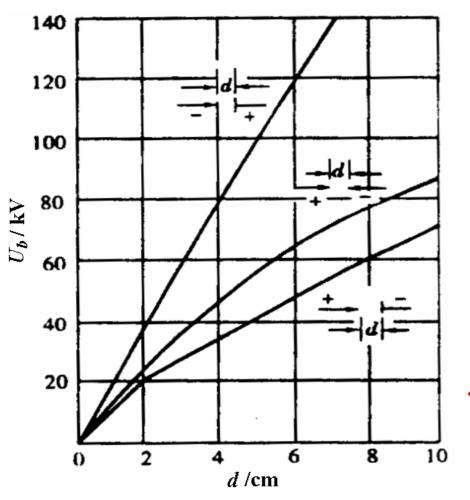
- 1. Breakdown voltages of gases in uniform and quasi-uniform fields
  - No polarity effects
  - Processes from initiation of ionization to final breakdown are very quick.
  - Under AC, DC, and impulse voltages, breakdown voltages are same.
  - Empirical formula of breakdown voltage:

$$U_b = 24.22\delta d + 6.08\sqrt{\delta d} \quad kV$$

δ - relative density of air
d – length of air gap

 $U_b$  is a function of  $(\delta d)$ , which satisfies the Paschen's law.

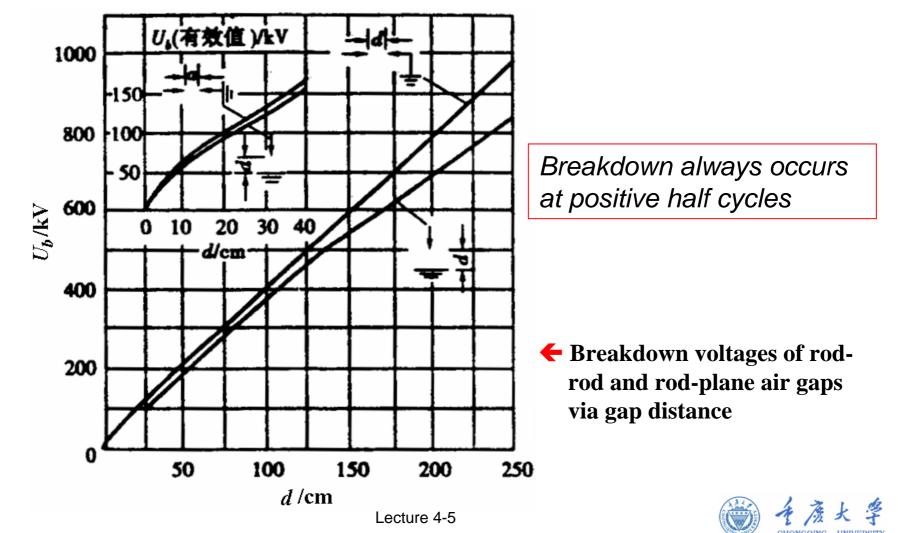
## **1.6.1 Influences of field non-uniformity**


#### 2. Breakdown voltages of gases in strongly non-uniform fields

- In power transmission application, breakdown voltages of rod-to-rod and rod-to-plane arrangements are used to determine insulation distances in cases of symmetric and asymmetric electrode arrangements, respectively.
- Results of breakdown voltages are scattered and polarity effect is significant.

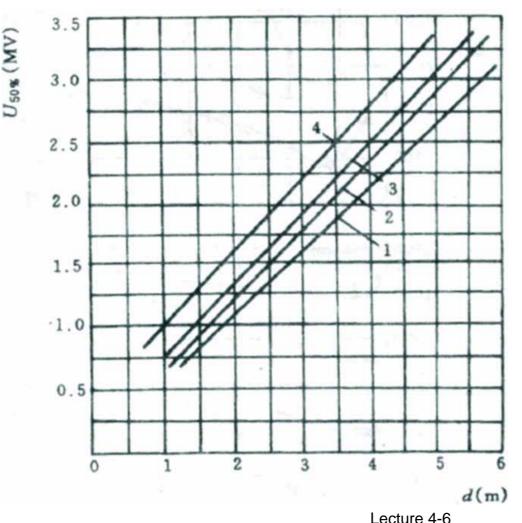
$$U_{b}(+) < U_{b}(-)$$
 and  $U_{c}(+) > U_{c}(-)$ 




**DC breakdown voltages of gas gaps** 



Freakdown voltages of rod-rod and rod-plane air gaps via gap distance



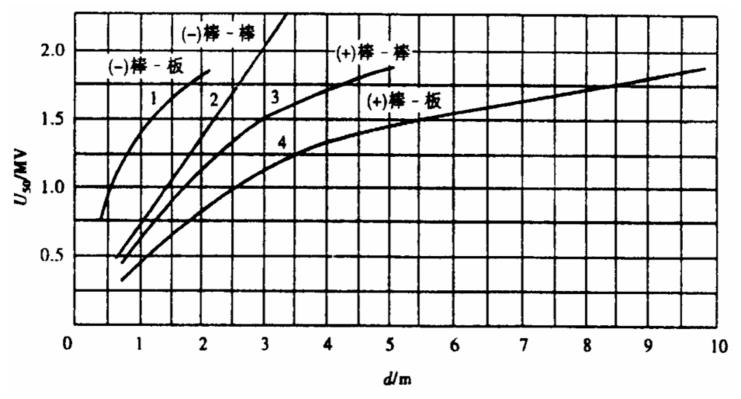

AC breakdown voltages of gas gaps



 $\cap$ 

Breakdown voltages of gaps under 1.2/50 impulse voltages



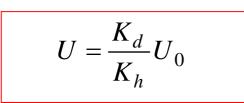

 $U_{50}(+) < U_{50}(-)$ 

- ♦ 1- rod-plane, positive
- 2- rod-rod, positive
- ♦ 3- rod-rod, negative
- ♦ 4- rod-plane, negative



 $\cap$ 

• Breakdown voltages of gaps under switching impulse voltages




Relationship between breakdown voltage and gap distance under switching impulse voltage (500/5000  $\mu s)$ 



#### **1.6.2 Influences of atmospheric conditions**

- Pressure (P), temperature (T), and humidity  $(h_c)$  of air influence density of air, free paths of electrons, collision ionization, and attachment of electrons. Therefore, atmospheric conditions influence breakdown voltages of air gaps.
- Breakdown voltages measured in different atmospheric conditions have to be transformed into values in standard atmospheric conditions for comparison.
  - Standard atmospheric conditions: P=101.3 kPa; T=293 K;  $h_c$ =11 g/m<sup>3</sup>
- Breakdown voltages of air gap decrease with increasing altitude, because density and pressure of air decrease with increasing of altitude.
  - Altitude correction for breakdown voltages



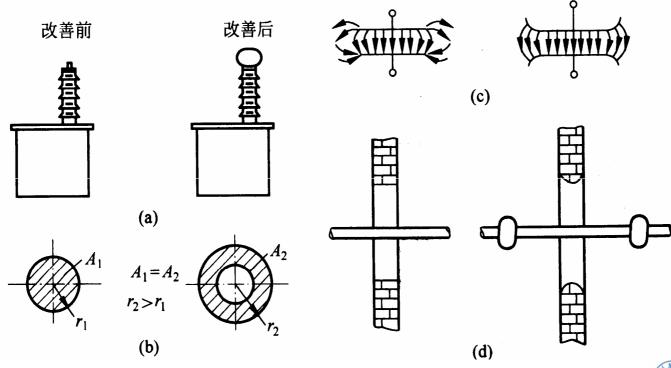
U - breakdown voltage in actual atmospheric condition.  $U_0$  - breakdown voltage in standard atmospheric condition.  $K_d$  - correction coefficient of air density  $K_h$  - correction coefficient of altitude



ЦO

Ч Ш  $\cap$ 

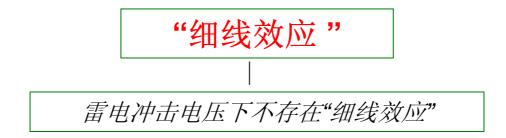
# **1.7 Approaches to improve electric strength of gas gaps**




#### **Basic approaches**

- The approaches are classified into two groups:
  - To improve electric field homogeneity in gas gaps.
    - To improve configuration of electrodes.
    - To generate field distortion by space charge.
  - To weaken ionization in gas gaps.




- 1. Improvement of electrode configuration
  - To increase radiuses of curvature of electrodes.
  - To smoothen the surfaces of electrodes
  - To eliminate the sharp edges of electrodes

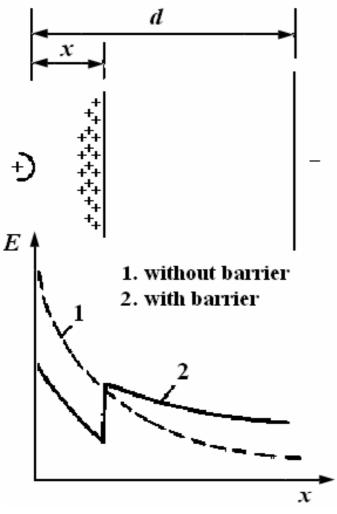




#### 2. Field distortion by space charge

- Corona discharges occur before complete breakdown in gas gaps.
- Space charge generated by corona discharges may improve field distribution in gas gaps and thereby enhance breakdown voltages.
- Breakdown voltages of gas gaps between two conductor lines may increase with decreasing diameters of conductor lines in a certain range.

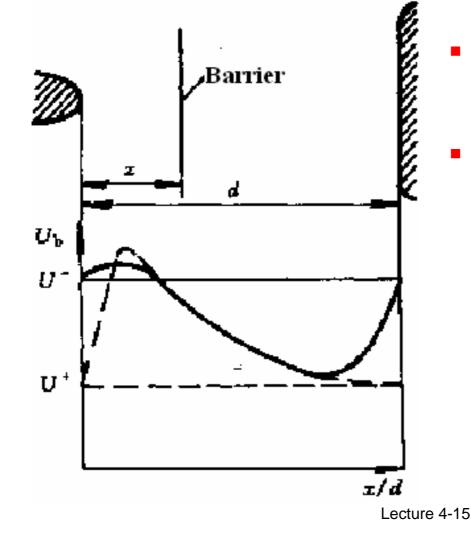





#### **3. Barriers used in strongly non-uniform fields**

- In strongly non-uniform fields, thin insulation boards used as barriers can improve field distribution.
- Breakdown voltages of gas gaps in strongly non-uniform fields can be enhanced by using barriers.
- The function of a barrier is to retard ions with the same polarity as the electrode where corona starts.




• Example of barrier in positive rod to negative plane



- Positive space charge is retarded by the barrier.
- Positive space charge stays and distributes on the barrier uniformly because of electrostatic repulsion.
- The field between the barrier and the positive rod is reduced and between the barrier and plane become more uniform.
- Breakdown voltage of the gap is improved by the barrier.



Breakdown voltages via barrier position under DC voltages



- Breakdown voltages of positive rod to plane gap are significantly enhanced by barriers.
- Barrier with well selected position may improve breakdown voltages of gas gaps.



#### **1.7.2** Approaches to weaken ionization

#### 1. Increase of gas pressure

- Free paths of electrons are reduced by increasing gas pressure and thereby collision ionization is weakened.
- Field homogeneity influence more on breakdown voltages in highpressure gases than in low-pressure gases.
  - Breakdown voltages decrease sharply in high-pressure gases when field homogeneity decreases.
- Surface conditions of electrode influence more on breakdown voltages in high-pressure gases than in low-pressure gases.
  - Roughness of electrode surface.
  - Contamination of electrode surface.
  - Humidity



#### **1.7.2** Approaches to weaken ionization

#### 2. Vacuum gaps

- Free paths of electrons are greater than gap distance in vacuum. Collision ionization is impossible. Breakdown voltages are significantly improved.
- Field emission is a principle ionization in vacuum. Cathode material and its surface conditions mainly influence breakdown voltages of vacuum gaps.
- If solid and liquid dielectrics are used in vacuum, they may release gases so that breakdown voltages decreases sharply.
- Application: vacuum breakers.



#### **1.7.2** Approaches to weaken ionization

- **3.** Uses of high-electric-strength gases (SF<sub>6</sub>)
  - Some gases of halogen family have greater electric strength than air, such as SF<sub>6</sub>.
  - Gases with great Electro-negativity
  - Used mainly for gas-insulated breakers.
  - It is not environment friendly.
    - A type of greenhouse gas

CHONGQING UNIVERSITY

OF HIGH VOLTAGE AND INSULATION ENG,

DEPT

